# Practical considerations to build up socioeconomical scenarios for local ecohydrological studies



# INFORMED - Workshop on methodologies to design global change scenarios (GCS) for the Mediterranean forests

Eduard Pla Ferrer Diana Pascual Sanchez

Solsona, 2nd December 2015



### General approach







- Based on current national o supranational projections:
  - Demographic projections
  - Economical development
- Consider territorial policies affecting the area
  - Land planning
  - Water use management
  - Irrigation plans

### **Consider:**

- ➤ Long temporal time frames → less capacity to predict reliable changes
- ➤ Short temporal time frames → difficult to see changes when comparing with the baseline







# **ACCUA**

### 2030 (with 2005 as baseline)

2. Land planning

Partial territorial plans - 2026: Definition of:

- Land use distribution to control urban development and to protect natural areas
- Urban population strategies to control population growth
- Future infrastructures
  - Urban areas
  - PEIN Nature 2000 network
  - Special protection
  - Territorial protection
  - Preventive protection











### 1.2. Definition of the spatial frame



#### - Based on:

- **Objectives** of the study: national or regional, river basin, ...
- Area that allows to analyse basic processes and to evaluate its response facing changes
- Spatial level of the available information

### 1.2. Definition of the spatial frame





### River basin as unit of study

- Similar surface
- Latitudinal gradient in climatic conditions
- Internal diversity in in environmental conditions, pressures and water demands
- Non regulated river basins

### 1.2. Definition of the spatial frame





### River basin as unit of study

- Unstudied river basins
- Share a common structural water deficit to supply all demands whereas ensuring ecological stream flows
- Availability of data

### General approach





### 2.1. Building up scenarios – Title and image



- Based on:
  - Global or regional socio-economical scenarios: IPCC, UNEP, OECD, European projects (ALARM, ESPON, PRELUDE, ....)
  - Concrete characteristics of the study area: land use distribution, water uses, ...
  - Expert knowledge on main socio-economical sectors

**Consider:** 

Contrasted scenarios to see differences

# 2.1. Building up scenarios – Title and image





#### Scenarios based on different socio-economical developments

- Trend scenario: maintenance of development trends of last decades
- Sustainable scenario: management strategies headed towards adaptation and reduction of climate change effects





#### Scenarios based on different adaptation strategies at river basin level

- **On forest areas**: Main land cover (63-75% of surface)
- On water uses

### General approach







- Definition of the general socio-economical context
- Identification of **socio-economical and environmental impacts** of the scenarios
- Translation of the general context to the local conditions of the study area based on interviews and meetings with key stakeholders

### Consider:

- Coherence with the most recent global or regional socioeconomical scenarios
- The translation of the general storyline to the local context can produce different dynamics in different basins



# **ACCUA**

#### Trend scenario

- General context:
  - Fast economic growth
  - High demographic growth
  - Intensive use of fossil fuels
  - Globalization



- Translation to local conditions:
  - > Fluvià : urban pressure increment (coast line), agricultural abandonment
  - Tordera: urban pressure increment (medium water course), agricultural concentration
  - Siurana: population maintenance, agricultural abandonment and intensification, execution of irrigation plan



# **ACCUA**

#### Sustainable scenario

- General context:
  - Moderate economic growth
  - Moderate demographic growth
  - Restraint of energy consumption

#### • Translation to local conditions:

- > Fluvià and Tordera: moderate population growth, urban restructuration
- Siurana: rejuvenation of population, agricultural adaptation and reconversion, no development of the irrigation plan







#### Zoning of scenarios

- Headwater scenarios: Changes on forest areas:
  - > AFOR: aforestation scenario, increasing forest area
  - > FIREFOR: fire occurrence, reducing forest area
  - MANAGEFOR: implementation of forest management, changing forest structure
  - > MOSAIC: recuperation of open areas and agro-forest mosaic
- Medium and low course scenarios: Changes on water uses:
  - RATUSE: rational use of water resources
  - HIGHDEMAND: increase of water demands





#### Scenarios development through

- Focus group meetings with key stakeholders
- **Expert knowledge** of the project partners in the three main sectors of the project: water management, forest and agriculture sectors.

### General approach







- Definition of required outputs: maps, data, ...
- Recompilation of **past data** to analyse the evolution
- Selection of the **methodology** to build up the scenarios: land change models, GIS tools, tables ...

### Consider:

- Questions to answer with the scenarios to define the outputs
- Uncertainties associated to the use of models and methodologies





#### Two required outputs:

 Land use cover for 2030: Application of the Land Change Modeler (LCM) Extension of IDRISI























**ACCUA** 

#### 2030 Land use cover

#### Fluvià – Relative changes per land use cover

| Land use cover | % change (in surface)<br>2005-2030<br>Trend scenario | % change (in surface)<br>2005-2030<br>Sustainable scenario |  |  |  |  |  |
|----------------|------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| Forest         | 6%                                                   | 4%                                                         |  |  |  |  |  |
| Shrublands     | -23%                                                 | -23%                                                       |  |  |  |  |  |
| Pastures       | -38%                                                 | 8%                                                         |  |  |  |  |  |
| Crops          | -12%                                                 | -11%                                                       |  |  |  |  |  |
| Urban areas    | 18%                                                  | 4%                                                         |  |  |  |  |  |

But when comparing changes respect the whole river basin area!





### 2030 Land use cover

#### Fluvià – Total changes compared with the whole river basin

| Land use cover | % change (in surface)<br>2005-2030<br>Trend scenario | % change (in surface)<br>2005-2030<br>Sustainable scenario |  |  |  |  |  |
|----------------|------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| Forest         | 4%                                                   | 3%                                                         |  |  |  |  |  |
| Shrublands     | -1%                                                  | -1%                                                        |  |  |  |  |  |
| Pastures       | -1%                                                  | 0%                                                         |  |  |  |  |  |
| Crops          | -2%                                                  | -3%                                                        |  |  |  |  |  |
| Urban areas    | 1%                                                   | 0%                                                         |  |  |  |  |  |

Changes were not so newsworthy ....





#### Two required outputs:

- Land use cover for 2030: Application of the Land Change Modeller (LCM) Extension of IDRISI
- Water demands per user sector for 2030: Numerical approach to estimate future population and water demands













### 2030 water demands

**Trend scenario:** Maintenance of current water demands:

- Domestic sector: High population growth + current water demands
- Agricultural sector: Irrigation plan + current water demands + CC
- Industrial sector: Current water demands
- Recreation sector: Increase of water demands by sportive areas

**Sustainable scenario**: Application of a saving scenario based on the hydrological planning

- Domestic sector: Low population growth + high water demand saving
- Agricultural sector: No irrigation plan + water demand saving (4.4%) + CC
- Industrial sector: Water demand saving (3.6%)
- Recreation sector: Current water demands + increase water re-use









#### Two required outputs:

- Land use cover for 2050 (headwater scenarios)
  - > AFOR, MOSAIC: Application of cellular automata models
  - FIREFOR: Application of MEDFIRE model
  - > MANAGEFOR: Application of the Catalan biomass planning
- Water demands for 2050 (medium and low course scenarios)
  - RATUSE: Reduction of water extractions:
    - reduction of domestic water consumption
    - use of regenerated water
    - modernization of the irrigation infrastructures
  - HIGHDEMAND: Increase of water demands
    - higher urban, industrial and agricultural consumption
    - obsolescence of irrigation infrastructures

### General approach







- Socio-economical scenarios as **input** for further analysis, combined with climate change scenarios:
  - effects on hydrology: changes in water availability, dam volumes or ecological streamflow.
  - effects on population: temperature impacts on some comfort indicators such as the number of hot days (Tmax > 30°C) or the number of tropical nights (Tmin >21 °C) in most populated areas
  - effects on forests: forest growth, forest health status, fire risk or changes of species.
  - effects on crops: changes on phenology or water demands.

### **Consider:**

Depending on the subsequent analysis, changes may not be so evident if the socio-economical scenarios are not clearly different

### 3. Application of socio-economical scenarios







**ACCUA** 

### Stream flow changes in 2006-2030

Relative stream flow changes from 2006-2030 respect to 1984-2008 (in %)

|    | Stream flow variation<br>at headwater |      |  |      |  | Stream flow variation<br>at river mouth |   |  |      |  |      |  |     |   |  |
|----|---------------------------------------|------|--|------|--|-----------------------------------------|---|--|------|--|------|--|-----|---|--|
|    |                                       | - 8  |  | - 5  |  | + 9                                     | % |  | - 5  |  | - 3  |  | - 4 | % |  |
|    |                                       | -11  |  | - 5  |  | +11                                     | % |  | - 5  |  | - 2  |  | - 8 | % |  |
| AZ |                                       | -20  |  | -11  |  | -11                                     | % |  | -13  |  | -15  |  | -25 | % |  |
| A2 |                                       | -20  |  | -11  |  | -10                                     | % |  | -13  |  | -14  |  | -29 | % |  |
|    |                                       | Fluv |  | Tord |  | Siu                                     |   |  | Fluv |  | Tord |  | Siu |   |  |

Fluvià and Tordera: socio-economical scenarios were not relevant in water balance  $\rightarrow$  Strong effect of forests in water balance

Siurana: the development of irrigation plans amplify climate change effects

3. Application of socio-economical scenarios









- Increase of the superficial stream flow contributions along the watershed due to the reduction of actual evapotranspiration and infiltration.
- Increase of the maxim stream flow, increasing the flood risk
- Increase of the flow variability, tending to more extreme situations → Forest as water balance regulators.

# Thank you!



Adapting the Mediterranean

http://www.creaf.uab.cat/accua/

http://medacc-life.eu/

Eduard Pla Ferrer – eduard.pla@uab.cat Diana Pascual Sanchez – d.pascual@creaf.uab.cat

